If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2=89
We move all terms to the left:
20x^2-(89)=0
a = 20; b = 0; c = -89;
Δ = b2-4ac
Δ = 02-4·20·(-89)
Δ = 7120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7120}=\sqrt{16*445}=\sqrt{16}*\sqrt{445}=4\sqrt{445}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{445}}{2*20}=\frac{0-4\sqrt{445}}{40} =-\frac{4\sqrt{445}}{40} =-\frac{\sqrt{445}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{445}}{2*20}=\frac{0+4\sqrt{445}}{40} =\frac{4\sqrt{445}}{40} =\frac{\sqrt{445}}{10} $
| x÷2+4=9 | | 5y-38=2(y-9) | | x÷4+8=14 | | 6x2=11x+7 | | 2x+7=180-(30+63) | | -6(u+2)=-2u-8 | | 3c+5=7 | | -4u-44=6(u+6) | | p-0.10=585 | | -(3x-1)=17 | | p-0.10=$585 | | 2/5n+1/10=1/2(4+n) | | 2x/3+x/5=11/6 | | 4(x+6)=7x+6 | | 21(x=13-5) | | X+2+x+4=170 | | 500-2p=-80+3p | | 14/x+7/4=0 | | 10=5q÷4 | | -14=-10+(-2x) | | 4x+3(4x+7)=4(7+3)-3 | | -5x2=-45 | | 6.95+.05x=22.95+.02x | | Q=6x35/50 | | 0.13y-0.6=8.83 | | -6x+(-21)=18 | | 6.95+0.05x=22.95+0.02x | | -9.8/2*t^2+18t-11=0 | | 6/50=q/35 | | -6x+-21=18 | | 7x-9=131+7x | | 2+(x)/(9)=(x)/(3)-3 |